
Methodology Experimental Results
★ Datasets

* EMS Dataset: 10, 687 images from multiple scenes. 
* ENCAA Dataset: 28, 798 frames of basketball game video.

★ Comparisons with related methods on both datasets

★ Evaluations of different components and techniques used to estimate importance
score in proposed method

★ Visualize results
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★ Introduction & Motivation
* Existing methods of important people detection require massive quantities of labelled 
data and detecting important people in unlabeled images has not yet been developed.
* The imbalance between the number of important people and non-important people in 
the picture will cause  pseudo-labelling imbalance problem.
* Not all unlabelled images contain important people; images without such people 
represent noisy unlabelled samples during learning. 

★ Contributions
* The proposed approach is the first to study on learning important people detection from 
partially labelled data.
* we contribute two large datasets called Extended-MS (EMS) and Extended- NCAA 
(ENCAA) for evaluation of semi-supervised important people detection by augmenting 
existing datasets with a large number of unlabelled images collected from the internet 
* Extensive experiments verify the efficacy of our proposed method on important people 
detection of semi-supervised phase.

★ Detecting Noisy Unlabelled Images 
* Image-specific effectiveness weight : 𝜀

𝜀 = 1 −
𝐻 𝓏*

𝐻 𝑀
* Effectiveness weight reflect the confidence that an unlabelled image features important 
people：
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★Overview of Proposed Method
* To alleviate the pseudo-labelling imbalance problem, we introduce a ranking strategy for 
pseudo-label estimation, and also introduce two weighting strategies applied to unlabelled
data loss.
* The final objective function can be expressed as: 

𝐿 = 𝐿𝒯 + 𝜆𝐿𝒰	
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★ Pseudo-labelling by Ranking-based Sampling:

* Ranking-based sampling procedure:
𝒮0𝒰, �̃� = 𝑅𝑎𝑛𝑘𝑆(𝑓R, 𝑥3𝒰 <=
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* Replacing the unlabelled people and corresponding
pseudo-labels with those sampled by RankS:
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★ Balancing Loss via Importance Score Weighting:
* Person-specific importance score weight: 𝓌V
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(b) Pseudo-labelling in Current Semi-
supervised Learning approach
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POINT. We adopt the POINT [17] method, a state-of-the-
art method of important people detection, as the baseline,
which we train only on labelled data using a fully super-
vised learning approach.
Pseudo Label is a simple yet efficient semi-supervised
learning approach for ordinary classification tasks, which
chooses the class with the maximum predicted probability
as the true label for each unlabelled sample.
Mean Teacher maintains two models: student and teacher.
Given unlabelled samples, the outputs of the teacher model
are used as pseudo-labels. The consistency loss is deter-
mined over the predictions of unlabelled images predicted
by student model and the pseudo-labels generated by the
teacher model such that the learned model can be invariant
to stochastic noise between student and teacher models.
Label Propagation infers the pseudo-labels of unlabelled
samples from the nearest neighbour graph, which is con-
structed based on the embeddings of both labelled and un-
labelled samples.

4.3. Implementation Details

We implement all methods in PyTorch. For a fair com-
parison, we adopt POINT (we have detailed it in Sup-
plementary Material) as the essential network with SGD
used as the optimizer in our method as well as other semi-
supervised baselines (i.e., PL, MT and LP). We run all
methods for 200 epochs and use the same hyper-parameters
for all methods. The hyper-parameter ↵ is learned on the
validation data and is set to 0.99 for all the experiments.
The weight decay is 0.0005 and the momentum is 0.9 in
all experiments. The learning rate is initialized to 0.001,
and we follow the learning rate update strategy of [17],
i.e., the learning rate is scaled by a factor of 0.5 every 20
epochs. We adopt the commonly used linear schedule to
update weight �, i.e., we increase � linearly from 0 to its
maximum (i.e., 1) over 35 epochs. We follow the standard
evaluation metric in [17], i.e., the mean average precision is
reported to measure the performance of all methods.

4.4. Comparisons with Related Methods

We first compare our method with current semi-
supervised learning methods adapted for important people
detection and the fully supervised learning baseline. From
Table 1, it is worth noting that the recent semi-supervised
learning approaches attain comparable results (e.g., the re-
sults of LP vs. those of POINT are 88.61 % vs. 88.21 %
on the ENCAA dataset if 66 % of labelled images are used)
but sometimes underperform the fully supervised baseline
(e.g., the results of LP vs. those of POINT are 86.66 % vs.
88.48 % on the EMS dataset if all labelled images are used).
In contrast, our method achieves a significant and consis-
tent improvement over the baseline; e.g., After adding unla-
balled images, our method outperforms the fully supervised
baseline by 4.45 % and 4.15 % on the EMS and ENCAA

Dataset EMS ENCAA
#labelled images 33 % 66 % 100 % 33 % 66 % 100 %

POINT (fully supervised) 83.36 85.97 88.48 84.60 88.21 89.75

Pseudo Label (PL) 83.37 85.35 88.57 85.70 88.43 90.56
Label Propagation (LP) 82.34 86.33 86.66 85.36 88.61 90.18
Mean Teacher (MT) 84.50 86.29 87.55 83.33 84.66 87.55

Ours 87.81 88.44 89.79 88.75 90.86 92.03

Table 1. Comparison with related methods on both datasets.

datasets, respectively, in the regime with fewer labels (33
%). These results of PL, LP and MT clearly demonstrate
that treating each person independently are unable to lever-
age valuable information from unlabelled images to help
training. On the contrary, the results of our method indi-
cate that three proposed strategies enable our method to ef-
fectively leverage the information of unlabelled images to
assist in training on a limited quantity of labelled data and
significantly boost performance.

4.5. Effect of the Proportion of Labelled Images

To further understand the factors that affect the perfor-
mance of semi-supervised important people detection, we
evaluate our method using different portions of labelled im-
ages. We randomly select 33 %, 66 % and 100 % of la-
belled images, and the remaining labelled images together
with unlabelled images are used WITHOUT labels. We
report the results in Table 1, Table 2 and Table 3. It is
clearly observed that using more labelled data can boost the
overall performance of important people detection, which
also enables the semi-supervised model to estimate more
accurate pseudo-labels for unlabelled images and further
boost performance. It also indicates that developing a semi-
supervised model that can correctly predict pseudo-labels
and combine them with the labelled training set is neces-
sary. From another point of view, the results shown in Table
2 imply that our method can consistently outperform the
fully supervised approach as well as related baselines and
clearly demonstrate the consistent efficacy of the three pro-
posed strategies.

4.6. Ablation Study

We conduct ablation study to investigate the effect
of three proposed strategies (i.e., ranking-based sampling
(RankS), importance score weighting (ISW) and effective-
ness weighting (EW)) on important people detection and
shown the results in Table 2, where “Oursw/o ISW and EW” in-
dicates our method using RankS only.

In Table 2, it is evident that all strategies can improve
performance in most label regimes, and the ranking-based
sampling strategy attains the greatest improvement; for in-
stance, on the ENCAA dataset, if 33 % of labelled images
are used, the method “Oursw/o ISW and EW” outperforms the
“Oursw/o RankS, ISW and EW” by 2.78 %. This result clearly
shows that the ranking-based sampling enables that the rel-
atively high score should be labelled as “important” and

Dataset EMS ENCAA
#labelled images 33 % 66 % 100 % 33 % 66 % 100 %

Oursw/o Ranks, ISW and EW 83.70 86.81 87.67 84.35 87.66 89.93
Oursw/o ISW and EW 85.55 87.25 88.53 87.13 90.53 91.49
Oursw/o EW 86.34 87.45 89.67 87.68 90.60 92.00
Ours 87.81 88.44 89.79 88.75 90.86 92.03

Table 2. Ablation study on both datasets. RankS repre-
sents ranking-based sampling while ISW and EW indicate impor-
tance score weighting and effectiveness weighting, respectively.
Oursw/o ISW and EW means our model without using ISW and EW.

Dataset EMS ENCAA
#labelled images 33 % 66 % 100 % 33 % 66 % 100 %

OursLP 87.51 88.10 89.65 88.95 91.06 91.98
OursMT 87.23 88.56 90.72 88.97 90.93 91.62
Ours 87.81 88.44 89.79 88.75 90.86 92.03

Table 3. Evaluation of different techniques (i.e., LP and MT)
when used for instantiating pseudo-label estimation function (i.e.,
g(·)) instead of using Softmax function.

the rest remain “non-important” when predicting pseudo-
labels within each unlabelled image, preventing assigning
all “non-important” or all “important” pseudo-labels during
label guessing in an image. This is also verified by Figure
2, where our method correctly predicts pseudo-labels for all
individuals (Figure 2(b)) during training and estimate accu-
rate importance scores at the end (e.g., Figure 2(a)) while
current semi-supervised learning approaches (i.e., LP and
MT) assign all individuals as “non-important” samples

From Table 2, we also observe that adding importance
score weighting (ISW) can consistently albeit slightly boost
the performance (e.g., the results of “Oursw/o EW” vs. those
of “Oursw/o ISW and EW” are 89.67 % vs. 88.53 % on the EMS
if all labelled images are used). This indicates that ISW
is able to alleviate the problem of data imbalance and ulti-
mately benefits the training of important people detection.

In addition, comparing the full model and our model us-
ing both RankS and ISW, we clearly observe that the esti-
mated effectiveness weight (EW, defined in Eq. 6) improves
the performance (e.g., “Ours” improves the performance of
“Oursw/o EW” from 86.34 % to 87.81 % on EMS if 33 % of
labelled images are used). This implies that our effective-
ness weighting strategy is able to detect and neglect noisy
unlabelled images with no important people, and this ben-
efits important people detection. To further better under-
stand how the effectiveness weight works, we visualize EW
of several unlabelled images and present them in Figure 6.
We clearly observe that if there are no important people in
the unlabelled image, EW is small (as shown in the second
row in Figure 6), while if important people are present, EW
is nearly 1 (as shown in the first row in Figure 6). This re-
sult again clearly demonstrates the efficacy of our proposed
EW on detecting noisy images and neglecting noisy sam-
ples during training.

Additionally, we also evaluate the effect of different
techniques (i.e., LP and MT) used to estimate importance
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! = 0.13 ! = 0.34
Figure 6. Examples of unlabelled images and their effectiveness
weights estimated automatically by our method.

score in our method during pseudo-labelling in Table 3,
where “OursLP” implys our method using Label Propa-
gation technique for importance score estimation during
pseudo-labelling. It is clearly shown in Table 3 that the vari-
ants of method using different techniques for importance
score estimation yield similar results, which demonstrates
the stableness of our methods.

5. Conclusion

In this work, we study semi-supervised learning in the
context of important people detection and propose a semi-
supervised learning method for this task. Compared with
recent semi-supervised learning approaches, our method is
shown to be able to effectively leverage the information
of unlabelled images to assist in model training. We also
conduct extensive experiments on important people detec-
tion by a semi-supervised learning method, and the re-
sults confirm that 1) the pseudo-labels of individuals in a
given unlabelled image should have the special pattern in
important people detection (i.e., the relatively high score
should be labelled as “important” and the rest remains “non-
important”), and our proposed ranking-based sampling is
able to achieve this; 2) our importance score weighting can
alleviate the imbalance problem and boost performance;
and 3) enabling the model to neglect the noisy unlabelled
images with no important people is important during semi-
supervised learning. By our learning, we are able to avoid
costly labelling on important people detection and achieve
satisfactory performance.
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Fgiure (a) is the distribution of top 8 importance score in testing set in EMS datasets and Figure 
(b) is the statistics of unlabelled data’s pseudo-labels on EMS dataset. Better view in color. 
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(a) CMC curve on EMS dataset (b) CMC curve on ENCAA dataset
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