

MIST: Multiple Instance Self-Training Framework for Video Anomaly Detection

Jia-Chang Feng, Fa-Ting Hong, Wei-Shi Zheng Sun Yat-sen University

Introduction Feature space Clip-Level Labeled Normal Video Vⁿ Video-Level Labeled Pseudo Clip-Level Labeled Abnormal Video *V*^a Abnormal Video V^a Input/Output of $G \longrightarrow \text{Input/Output of } E_{SGA} \square \text{ Normal } \square \text{ Abnormal}$

- There is a domain gap lying between common videos and surveillance videos leading to insufficient representations for video anomaly detection (VAD) that need to be minimized.
- Most previous works tackled weakly supervised VAD (WS-VAD) in coarsegrained or off-line manner that is not practical for real-time streaming videos.
- Spatial anomaly explanation/visualization is also significant for anomaly alarms understanding and solving.

> Contributions:

- for discriminative representations to tackling WS-VAD problem.
- sparse continuous sampling strategy, and a self-guided attention enhanced feature encoder finetuned with generated pseudo labels.
- MIST not only provide temporal anomaly detection but also provide spatial

➤ Introduction & Motivations

- The proposed two-stage framework MIST is an efficient method to finetune feature encoder
- MIST contains a multiple instance learning based pseudo label generator along with a novel
- explanation/visualization.
- Extensive experiments on UCF-Crime verify the efficacy of MIST on WS-VAD.

Stage I. Pseudo Labels Generation

Algorithm 1 Multiple instance self-training framework

Input: Clip-level labeled normal videos $V^n = \{v_i^n\}_{i=1}^N$ and corresponding clip-level labels Y^n , video-level labeled abnormal videos $V^a = \{v_i^a\}_{i=1}^N$, pretrained vanilla feature encoder E.

Output: Self-guided attention boosted feature encoder E_{SGA} , multiple instance pseudo label generator G, clip-level pseudo labels \hat{Y}^a for V^a

Stage I. Pseudo Labels Generation.

- 1: Extract features of V^a and V^n from E as $\{f_i^a\}_{i=1}^N$ and
- 2: Training G with $\{f_i^a\}_{i=1}^N$ and $\{f_i^n\}_{i=1}^N$ and their corresponding video-level labels according to Eq. 7.
- 3: Predict clip-level pseudo labels for each clip of V^a via trained G as \hat{Y}^a .

Stage II. Feature Encoder Fine-tuning.

4: Combine E with self-guided attention module as E_{SGA} , then fine-tune E_{SGA} with supervision of $Y^n \cup \hat{Y}^a$.

> Stage II: Feature Encoder Finetuning Attention map generation • $\mathcal{A} = \mathcal{F}_2(\mathcal{F}_1(\mathcal{M}_{b-4}))$

Methodology

- Attention map is indirectly enhanced by pseudo labels guidance with a guided classification head H_g to make \mathcal{M}_{b-4}^* more discriminative.
- Training objective in finetuning.
- $\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2$
- \mathcal{L}_1 , \mathcal{L}_2 : class-weighted cross-entropy loss \mathcal{L}_{AIR}

 $\mathcal{L}_w = -w_0 y \log p - w_1 (1 - y) \log(1 - p)$

Experimental results

Method	Supervised	Grained	Encoder	AUC (%)	FAR (%)
Hasan et al. [7]	Un	Coarse	AE^{RGB}	50.6	27.2
Lu et al. [16]	Un	Coarse	Dictionary	65.51	3.1
SVM	Weak	Coarse	$C3D^{RGB}$	50	-
Sultani et al. [23]	Weak	Coarse	$C3D^{RGB}$	75.4	1.9
Zhang et al. [32]	Weak	Coarse	$C3D^{RGB}$	78.7	-
Zhu et al. [38]	Weak	Coarse	AE^{Flow}	79.0	-
Zhong et al. [35]	Weak	Fine	$C3D^{RGB}$	80.67*(81.08)	$3.3^*(2.2)$
Liu et al. [13]	Full(T)	Fine	$C3D^{RGB}$	70.1	-
Liu et al. [13]	Full(S+T)	Fine	NLN^{RGB}	82.0	-
MIST	Weak	Fine	$C3D^{RGB}$	81.40	2.19
MIST	Weak	Fine	$I3D^{RGB}$	82.30	0.13

Table 1: Quantitative comparisons with existing online methods on UCF-Crime under different levels of supervision and fineness of prediction. The results in (\cdot) are tested with 10-crop, while those marked by * are tested without.

Method	Feature Encoder	Grained	AUC (%)	FAR (%)
Sultani et al. [23]	$C3D^{RGB}$	Coarse	86.30	0.15
Zhang et al. [32]	$C3D^{RGB}$	Coarse	82.50	0.10
Zhong et al. [35]	$C3D^{RGB}$	Fine	76.44	-
AR-Net [27]	$C3D^{RGB}$	Fine	85.01*	0.57^{*}
AR-Net [27]	$I3D^{RGB}$	Fine	85.38	0.27
AR-Net [27]	$I3D^{RGB+Flow}$	Fine	91.24	0.10
MIST	$C3D^{RGB}$	Fine	93.13	1.71
MIST	$I3D^{RGB}$	Fine	94.83	0.05

Table 2: Quantitative comparisons with existing methods on ShanghaiTech. The results with * are re-implemented.

> Effect of MIST finetuning

Encoder Aspestia		AUC	(%)			
Encoder-Agnostic	UCF-Crime			ShanghaiTech		
Methods	pretrained	MIST	Δ	pretrained	MIST	Δ
Sultani et al. [20]	78.43	81.42	+2.99	86.92	92.63	+5.
Zhang et al. [28]	78.11	81.58	+3.47	88.87	92.50	+3.
AR-Net [24]	78.96	82.62	+3.66	85.38	92.27	+6.
Our MIL generator	79.37	81.55	+2.18	89.15	92.24	+3.

> Stage I: Pseudo Labels Generation

• Uniformly sample L sub-bag, where each

sub-bag consists of T continuous clips.

• Sparse continuous sampling:

Generator training objective

Moving average smoothing

• Min-max normalization

Pseudo labels refinement

 $\mathcal{L}_{MIL} = \left(\epsilon - \max_{1 \le l \le L} \mathcal{S}_l^a + \max_{1 \le l \le L} \mathcal{S}_l^n\right)_+ + \frac{\lambda}{L} \sum_{l=1}^L \mathcal{S}_l^a.$

 $\hat{y}_i^a = \left(\tilde{s}_i^a - \min \tilde{S}^a\right) / (\max \tilde{S}^a - \min \tilde{S}^a)), i \in [1, N]$

Table 3: Quantitative comparisons between the features from the pretrained vanilla feature encoder and those from MIST on UCF-Crime and ShanghaiTech datasets by adopting encoder-agnostic methods.

Feature space visualization via t-SNE on UCF-Crime.

> Anomaly scores visualization on UCF-Crime

➤ Ablation studies

Spatial explanation/visualization

	Dataset	Esst as		ΔAUC	
	Dataset	Feature	Uniform	Sparse Continuous	(%)
	UCF-Crime	$C3D^{RGB}$	74.29	75.51	+1.22
		$I3D^{RGB}$	78.72	79.37	+0.65
	ShanghaiTech	$C3D^{RGB}$	83.68	86.61	+2.93
Shanghartech	$I3D^{RGB}$	83 10	89 15	+6.05	

Table 4: Performance comparisons of sparse continuous sampling and uniform sampling for MIL generator training.

Method	AUC (%)	Score Gap (%)
Baseline	74.13	0.375
	73.33	0.443
	81.97	15.37
MIST ^{w/o SGA}	80.28	12.74
MIST	82.30	17.71
	Baseline MIST ^{w/o PLs} MIST ^{w/o H_g} MIST ^{w/o SGA}	Baseline 74.13 MIST ^{w/o PLs} 73.33 MIST ^{w/o H_g} 81.97 MIST ^{w/o SGA} 80.28

Table 5: Ablation Studies on UCF-Crime with $I3D^{RGB}$ Baseline is the original I3D trained with video-level labels [35]. MIST is our whole model. MIST^{w/o PLs} is trained without pseudo labels but with video-level labels. MIST^{w/o H_g} is MIST trained without H_g . MIST^{w/o SGA} is trained without the self-guided attention module).