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➢ Overview
Methodology

• There is a domain gap lying between 

common videos and surveillance videos 

leading to insufficient representations for 

video anomaly detection (VAD) that need 

to be minimized.

• Most previous works tackled weakly 

supervised VAD (WS-VAD) in coarse-

grained or off-line manner that is not 

practical for real-time streaming videos.

• Spatial anomaly explanation/visualization 

is also significant for anomaly alarms 

understanding and solving. 
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• The proposed two-stage framework MIST is an efficient method to finetune feature encoder 

for discriminative representations to tackling WS-VAD problem.

• MIST contains a multiple instance learning based pseudo label generator along with a novel 

sparse continuous sampling strategy, and a self-guided attention enhanced feature encoder 

finetuned with generated pseudo labels.

• MIST not only provide temporal anomaly detection but also provide spatial 

explanation/visualization.

• Extensive experiments on UCF-Crime verify the efficacy of MIST on WS-VAD.
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➢ Stage I: Pseudo Labels Generation
➢ Stage II: Feature Encoder Finetuning
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• Sparse continuous sampling:
• Uniformly sample L sub-bag, where each 

sub-bag consists of T continuous clips.

• Generator training objective

• Pseudo labels refinement
• Moving average smoothing

• Min-max normalization

• Attention map generation
• 𝒜 = ℱ2(ℱ1 ℳ𝑏−4 )

• Attention mechanism

•

• Attention map is indirectly enhanced by pseudo 

labels guidance with a guided classification head 

𝑯𝑔to make ℳ𝑏−4
∗ more discriminative.

• Training objective in finetuning.
• ℒ = ℒ1 + ℒ2
• ℒ1, ℒ2: class-weighted cross-entropy loss ℒ𝓌

➢ Introduction & Motivations

➢ Experimental results ➢ Effect of MIST finetuning

➢ Anomaly scores  visualization on UCF-Crime

➢ Ablation studies

• Spatial explanation/visualization

Feature space visualization via t-SNE on UCF-Crime.
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